

- 1 Thermal alteration of soil organic matter properties: a systematic study to
- 2 infer response of Sierra Nevada climosequence soils to forest fires
- 3
- 4 Samuel N. Araya¹, Marilyn L. Fogel^{1,2}, and Asmeret Asefaw Berhe^{1,2}
- 5 ¹Environmental Systems Graduate Group, University of California, Merced, CA 95343
- 6 ²Life and Environmental Sciences Unit, University of California, Merced, CA 95343
- 7
- 8
- 0
- 9 Corresponding author:
- 10 S. N. Araya
- 11 e-mail: saraya@ucmerced.edu
- 12

1 Abstract

2	Fire is a major driver of soil organic matter (SOM) dynamics, and contemporary global
3	climate change is changing global fire regimes. We investigated thermal alteration of SOM
4	properties by exposing five different topsoils (0 to 5 cm depth) from the western Sierra
5	Nevada Climosequence to a range of temperatures that are expected during prescribed and
6	wild fires (150, 250, 350, 450, 550 and 650 $^\circ$ C), and determined temperature thresholds for
7	major shifts in SOM properties. With increase in temperature, we found that the
8	concentrations of C and N decreased in a similar pattern among all five soils that varied
9	considerably in their original SOM concentrations and mineralogies. Soils were separated
10	into discrete size classes by dry sieving. The C and N concentrations in the larger aggregate
11	size fractions (2-0.25mm) decreased with increase in temperature that at 450 °C temperature,
12	the remaining C and N were almost entirely associated with the smaller aggregate size
13	fractions (<0.25 mm). We observed a general trend of ¹³ C enrichment with increase
14	temperature whereas there was ¹⁵ N enrichment with increase in temperature only up to
15	350 °C followed by 15 N depletion as temperature increased beyond 350 °C. For all the
16	measured variables, the largest physical, chemical, elemental, and isotopic changes occurred
17	at the mid-intensity fire temperatures, i.e. 350 and 450 $^\circ$ C. The magnitude of the observed
18	changes in SOM composition and distribution in three aggregate size classes, as well as the
19	temperature thresholds for critical changes in physical and chemical properties of soils (such
20	as specific surface area, pH, cation exchange capacity) suggest that transformation and loss of
21	SOM are the principal responses in heated soils. Findings of this systematic investigation of
22	soil and SOM response to heating are critical for predicting how soils are likely to be affected
23	by future climate and fire regimes.

24 Keywords : Thermal alterations, Soil Organic Matter, Fire, Climosequence.

1 1. Introduction

2	Fire is a common, widespread phenomenon in many ecosystems around the world (Bowman
3	et al., 2009). Vegetation fires burn an estimated 300 to 400 million hectares of land globally
4	every year (FAO, 2005). In the US alone, over 80,000 fires were reported in 2014-including
5	about 63,000 wildland fires, and 17,000 prescribed burns that burned over 1.5 million and
6	970,000 ha of land, respectively (National Interagency Fire Center, 2015). In the Sierra
7	Nevada, vegetation fires have a major influence on the landscapes (McKelvey et al., 1996).
8	Historically most fires were caused by lightning fires and vegetation fires play important role
9	in maintaining the health of many ecosystems around the world (Harrison et al., 2010). In
10	recent decades, anthropogenic activities have become major causes of vegetation fires
11	(Caldararo, 2002), Moreover, climate and climatic variations exert strong control on the
12	distribution, frequency, and severity of fires (Harrison et al., 2010). Significant changes in
13	global fire regimes are anticipated because of climate change including an increase in
14	frequency of fires in the coming decades (Pechony and Shindell, 2010; Westerling et al.,
15	2006). However, our understanding of how climate change and changes in fire regimes will
16	interact to influence topsoils in fire affected ecosystems is limited.
17	In addition to combustion of aboveground biomass and alteration of vegetation dynamics, fire
18	also significantly affects the physical, chemical and biological properties of soils (Certini,
19	2005; González-Pérez et al., 2004; Mataix-Solera et al., 2011). The degree of alteration
20	caused by fires depends on the fire intensity and duration, which in turn depend on factors
21	such as the amount and type of fuels, properties of above ground biomass, air temperature
22	and humidity, wind, topography, and soil properties such as moisture content, texture and soil
23	organic matter (SOM) content (DeBano et al., 1998). The first-order effects of fire on soil are
24	caused by the input of heat causing extreme soil temperatures in topsoil (Badía and Martí,
25	2003b; Neary et al., 1999) resulting in loss and transformation of SOM, changes in soil

- 1 hydrophobicity, changes in soil aggregation, loss of soil mass, and addition of charred
- 2 material and other combustion products (Albalasmeh et al., 2013; Araya et al., 2016; Mataix-
- 3 Solera et al., 2011; Rein et al., 2008). The duration of burning impacts soil properties because
- 4 it determines the amount of energy transferred through the soil. Fires with longer durations
- 5 typically have greater impact on soil properties and SOM than higher temperature fires if they
- 6 are fast-moving (Frandsen and Ryan, 1986; González-Pérez et al., 2004).
- 7 Fire has multiple, complex effects on carbon (C) dynamics in soil. Wildfires alone lead to the release of up to 4.1 Pg C yr⁻¹ to the atmosphere in the form of carbon dioxide, with an 8 9 additional 0.05 to 0.2 Pg C yr⁻¹ added to the soil as black or pyrogenic carbon ash (Singh et 10 al., 2012). The changes in SOM characteristics due to combustion include reduced solubility 11 of OM due to loss of external oxygen containing functional groups; reduced chain length of 12 fatty acids, alcohols and other alkyl compounds; higher aromaticity of sugars and lipids; 13 production of pyrogenic carbon; formation of heterocyclic nitrogen (N) compounds; and 14 macromolecular condensation of humic substances (González-Pérez et al., 2004). 15 Furthermore, by altering and removing vegetation and topsoil biomass, and increasing soil erodibility (Carroll et al., 2007; DeBano, 1991), subsequently leading to a shift in plant and 16 17 microbial populations (Janzen and Tobin-Janzen, 2008). 18 The aim of this study is to investigate effects of heating temperatures on important SOM 19 properties. We use a laboratory heating experiment on soils from a well-characterized 20 climosequence in the western Sierra Nevada mountain range to determine: (1) magnitudes of 21 change in SOM properties associated with different fire heating temperatures; (2) identify 22 critical thresholds for these changes; and (3) infer the implications of changing climate on 23 topsoil SOM properties that might experience changing fire regime. This study aims to

- 1 contribute to the systematic evaluation and development of ability to predict the effect of
- 2 different intensity fires on soil properties under changing climate and fire regimes.

3 2. Materials and methods

4 2.1. Study site and soil description

- 5 For this study, we collected soils from five sites across an elevation transect along the
- 6 western slope of the central Sierra Nevada (Figure 1); the sites were previously characterized
- 7 by Dahlgren et al. (1997). We selected four forested sites that are likely to experience forest
- 8 fires and a fifth lower elevation grassland site for comparison. The thermal alterations of bulk
- 9 soil physical and chemical properties from the same study soils was previously reported in
- 10 Araya et al. Araya et al. (2016).
- All the sites have a Mediterranean climate characterized by warm to hot dry summers and
- 12 cool to cold wet winters. Mean annual air temperature ranges from 16.7 °C at the lowest site
- 13 located at 210 m to 3.9 °C at the highest elevation site which is at an elevation of 2865 m.
- 14 Annual precipitation ranges from 33 cm at the lowest site to 127 cm at the highest site
- 15 (Dahlgren et al., 1997; Rasmussen et al., 2007) (Table 1).

The lower elevation woodlands of Sierra Nevada experience less frequent fires than further upslope and the fires are often fast moving and lower severity (Skinner and Chang, 1996). At the middle-elevation zone of Sierran forest, the mixed conifer zones, frequent fires are low to moderate severity at lower altitudes but fire frequency generally increases with altitude towards the upper elevation of the mixed conifer forest (Caprio and Swetnam, 1993). Fires are infrequent and low severity within the high altitude, Subalpine, zone of Sierra (Skinner and Chang, 1996).

1 Soils from the lowest elevation site, Vista soils (210 masl), fall within the oak woodland zone 2 (elevations < 1008 m). This is the only soil in our study that does not have an O-horizon, the 3 soil has dense annual grass cover, however, and the A-horizon SOM originates mainly from 4 root turnover. Musick soils (1384 masl) lie within oak/mixed-conifer forest (1008-1580 5 masl) and mixed-conifer forest (1580-2626 masl). These soils receive the highest biomass 6 and litter fall. Shaver and Sirretta soils (2317 masl) fall within the mixed-conifer forest range 7 zone while Chiquito soils (2865 masl) lies within the subalpine mixed-conifer forest range (2626—3200 masl). These soils have lower biomass and litter fall compared to the lower 8 9 elevation soils (van Wagtendonk and Fites-Kaufman, 2006).

10 The western slope of central Sierra Nevada presents a remarkable climosequence of soils that 11 developed under similar granitic parent material and are located in landscapes of similar age, 12 relief, slope and aspect (Trumbore et al., 1996) with significant developmental differences 13 attributed to climate. The soils at mid-elevation range (1000 to 2000 masl) tend to be highly 14 weathered while soils at high and low elevations are relatively less developed (Dahlgren et 15 al., 1997; Harradine and Jenny, 1958; Huntington, 1954; Jenny et al., 1949). Among the most 16 important changes in soil properties along the climosequence include changes in soil organic 17 carbon (SOC) concentration, base saturation, and mineral desilication and hydroxyl-Al 18 interlayering of 2:1 layer silicates. Soil pH generally decreases with elevation and the 19 concentrations of clay and secondary iron oxides show a step change at the elevation of 20 present-day average effective winter snowline, i.e. 1600 m elevation (Tables 1 and 2) 21 (California Department of Water Resources, 1952-1962; Dahlgren et al., 1997).

22 2.2. Experimental design and sample collection

23 Triplicate samples (0 to 5 cm depth) were collected at the five sites, approximately 10 m

apart from each other. The soils were air-dried at room temperature and passed through 2 mm

- 1 sieve. Prior to furnace heating, the soils were oven dried at 60 °C overnight. Soil bulk density
- 2 and field soil moisture were determined from separate undisturbed core samples collected
- 3 from each site (Table 2).

4 Sub-samples from each soil were heated in muffle furnace to one of six selected maximum 5 temperatures (150, 250, 350, 450, 550 and 650 °C). To ensure uniform soil heating and 6 reduce formation of heating gradient inside, the soils were packed 1 cm high in a 7 cm 7 diameter porcelain flat capsule crucibles. Oxygen supply during the heating was limited by 8 the availability of space, and the volume of soil sample to volume air in furnace was approximately 1:50. Furnace temperature was ramped a rate of 3 °C min⁻¹ and soils were 9 10 exposed to the maximum temperature for 30 minutes. Once cooled to touch, soils were stored 11 in in air-tight polyethylene bags prior to analysis.

12 The six heating temperatures were selected to correspond with fire intensity categories that 13 are based on maximum surface temperature (DeBano et al., 1977; Janzen and Tobin-Janzen, 14 2008; Neary et al., 1999), that is, low intensity (150 and 250 °C), medium intensity (350 and 15 450 °C), and high intensity (550 and 650 °C). These fire intensity classes generally 16 correspond with thresholds for important thermal reactions in soils observed by differential 17 thermal analyses (Giovannini et al., 1988; Soto et al., 1991; Varela et al., 2010). Heating rate of 3 °C min⁻¹ is preferred in laboratory fire simulation experiments (Giovannini et al., 1988; 18 19 Terefe et al., 2008; Varela et al., 2010), the slow heating rate prevents sudden combustion 20 when soil's ignition temperature is reached at about 220 °C (Fernández et al., 1997, 2001; 21 Varela et al., 2010). The samples were exposed to the maximum set temperature for a period 22 of 30 minutes. This length of time ensures that the entire sample is uniformly heated at the set 23 temperature and is in keeping with wide majority of similar laboratory soil heating 24 experiments (for example Badía and Martí, 2003a; Fernández et al., 2001; Giovannini, 1994;

- 1 Varela et al., 2010; Zavala et al., 2010). The duration of soil heating under vegetation fires is
- 2 highly varied and not uniform across landscape (Parsons et al., 2010). The same heating
- 3 procedure was used for all the soils so that it would be possible to compare how the soils
- 4 from different climate regimes are likely to respond to the fires.

5 2.3. Laboratory analysis

Dry-aggregate size distribution was measured by sieving. Samples were dry sieved into three
aggregate size classes: 2–0.25 mm (macro-aggregates), 0.25–0.053 mm (micro-aggregates)
and <0.053 mm (silt and clay sized particles or composites). These aggregate size classes
were selected to enable comparison with other studies that investigated the effect of different
natural and anthropogenic properties on soil aggregate dynamics and aggregate protected
organic matter (Six et al 2000).

12 C and N concentrations and stable isotope ratios were measured using an elemental

13 combustion system (Costech ECS 4010 CHNSO Analyzer, Costech Analytical Technologies,

14 Valencia, CA, USA) that is interfaced with a mass spectrometer (DELTA V Plus Isotope

15 Ratio Mass Spectrometer, Thermo Fisher Scientific, Inc, Waltham, MA, USA). For the

16 analyses, air-dried soil samples were ground to powder consistency on a ball-mill (8000M

17 MiXer/Mill, with a 55 ml tungsten Carbide Vial, SPEX SamplePrep, LLC, Metuchen, NJ,

18 USA) and oven dried at 60 °C for over 36 hours. This lower temperature and longer duration

19 oven-drying was used to avoid possible heating related C or N changes that might occur if

- 20 drying was done 105 °C (Kaiser et al., 2015). The C and N concentration results were
- 21 corrected for moisture by oven-drying subsamples at 105 °C overnight. The C and N
- 22 concentration results were corrected for moisture by and adjusting for moisture as: $W_{adj} =$
- 23 $W \times (100 W_m)$. Where W_{adj} is the adjusted percent concentration, W is the concentration
- 24 before moisture adjustment and W_m is the percent moisture content. All concentration

- 1 changes resulting from moisture adjustment were a decrease of less than 1% of the value. The
- 2 stable isotope ratios are presented using the δ notation (per mill, ‰) as δ ¹³C and δ ¹⁵N
- 3 calculated as: $\delta = [(R_{sample} R_{standard})/R_{standard}] \times 1000\%$; where *R* is ratio of
- 4 ${}^{13}C/{}^{12}C$ for δ ${}^{13}C$, and ${}^{15}N/{}^{14}N$ for δ ${}^{15}N$. The standards used for analyses are atmospheric
- 5 N₂ δ ¹⁵N and Vienna Pee Dee Belemnite (VPDB) δ ¹³C.
- Bulk soil organic matter composition was analyzed using Fourier-transform infrared (FTIR)
 spectroscopy on a Bruker IFS 66v/S vacuum FT-IR spectrometer (Bruker Biosciences
 Corporation, Billerica, MA, USA). We used diffuse reflectance infrared Fourier-transform
 (DRIFT) technique (Ellerbrock and Gerke, 2013; Parikh et al., 2014). Powder samples were
- 10 dried overnight at 60 °C and scanned in mid-IR from 4000 to 400 cm⁻¹. Non-KBr diluted
- 11 samples were used after preliminary analyses revealed that dilution is not necessary for soils
- 12 with low (<10%) organic matter concentrations (Ellerbrock and Gerke, 2013; Reeves III,
- 13 2003). Furthermore, using non-diluted samples was also favored because, even though
- 14 dilution has the advantage of increased spectral quality, non-KBr diluted DRIFT has
- 15 advantage in that it reduces sample preparation to a minimum, reduces possible interference
- 16 by absorbed matrix hydration, maintains higher sensitivity, and the use of relatively larger
- 17 samples provide better representation of sample heterogeneity (Janik et al., 1998).

18 2.4. Statistical Analysis

All quantitative results are expressed as means of three replicates ± standard error, unless otherwise indicated. Differences of means were tested by Analysis of Variance (ANOVA) and pairwise comparison of treatments done using Tukey's HSD test at p<0.05 significance level. The normality of the data and the homogeneity of variances was checked using Shapiro-Wilk's and Levene's tests respectively. All statistical analysis were performed using

- 1 R statistical software (R Core Team, 2014). The ordinary linear regression technique was
- 2 used to examine relationships between soil properties.

3 3. Results

- 4 **3.1.** Carbon and nitrogen concentration
- 5 The initial concentration of C ranged from 1.5% (Vista soil, 210 masl) to 7.7 % (Musick
- 6 soils, 1384 masl). Soil C concentration decreased with increase in temperature with the
- 7 largest decrease occurring between temperatures of 250 and 450 °C. At 450 °C, all soils had
- 8 lost more than 95% of their initial C. At temperatures above 450 °C, C concentration changes
- 9 were small and we did not find statistically significant changes at p<0.05. The C:N ratio
- 10 ranged from 10 (Vista soils, 210 masl) to 29 (Musick soils, 1384 masl). The C:N ratio
- 11 decreased with increase in heating temperature in a similar pattern to the C concentration
- 12 (Figure 2).

13	The loss of C and N from soils due to heating showed a similar response among all five soils
14	(Figure 2). After 250 °C, all the soils lost more than 25% of their initial C (except Shaver
15	soils that lost only about 10%). At 350 °C all soils lost 50 to 70% of C. Heating at 450 °C led
16	to the loss of more than 95% of their initial C for all soils in this study. However, the rate of
17	loss of N was lower than that of C. At temperatures greater than 550 $^{\circ}\text{C}$ there was 5 to 15%
18	of soil N still remaining. Consequently, we observed a decrease of C:N ratio with increase in
19	heating temperature. All soils continued to lose about 15% soil N for every 100 °C increase
20	and maintained more than 60% of their N at heating temperatures up to 350 $^{\circ}\text{C}.$ After heating
21	at 450 °C, all soils lost more than 60% of the initial soil N and 85% by 550 °C.

1 **3.2.** Carbon and nitrogen stable isotopes

- 2 The $\delta^{13}C$ composition of all soils was indicative of C-3 vegetation. Soil $\delta^{13}C$ composition
- 3 was most negative at about -28‰ for the lowest elevation Vista site (210 m) and the value
- 4 got consistently less negative with increase in elevation reaching -24‰ for the highest two
- 5 sites (i.e. >2317 m elevation). For all soils, there was a general trend of δ^{13} C enrichment with
- 6 increase in temperature (Figure 2). The largest change (2.5 to 3.0%) occurred at heating
- 7 temperature between 250 and 450 °C for the lower elevation soils and between 150 and
- 8 450 °C for the two highest elevation soils. For the two highest elevation soils, there was a
- 9 significant (p <0.05) depletion above that temperature. For all soils, except Musick (1384 m)
- 10 and Shaver (1737 m), the maximum enrichment occurred at 450 °C. All soils showed a
- similar pattern $\delta^{15}N$ composition change with temperature. The soils were increasingly $\delta^{15}N$
- 12 enriched with increase in heating temperature up to 350 °C. At temperatures above 350 °C,
- 13 the soils got more δ^{15} N depleted with the most negative δ^{15} N occurring at 650 °C (Figure 2).

14 **3.3.** Carbon and nitrogen distribution in aggregate size fractions

- 15 C and N concentrations, as well as ¹³C and ¹⁵N stable isotope ratios were measured for
- 16 individual soil aggregate size class. The analysis was done on samples heated up to a
- 17 temperature of 450°C. The concentration of C and N in samples heated above 450 °C was too
- 18 low to measure significant changes in C distribution in the different aggregate size classes.
- 19 The distribution of C in the three aggregate sizes fractions followed the same general pattern
- 20 with increase in the heating temperatures. The macro aggregate size fraction (2-0.25 mm) had
- 21 the least C concentration and silt-clay size particles (<0.053 mm) had the largest
- 22 concentration of C (Figure 3). N concentration for the macro size aggregates was below the
- 23 detection limit at 450°C for Chiquito and Sirretta. The change in C and N concentration
- 24 across heating temperature was similar for all soils

1	The distribution of C and N in different size aggregates did not change noticeably except at
2	450 $^{\circ}\mathrm{C}$ where concentration in all three fractions converged to zero. The distribution of N in
3	the three aggregate sizes fractions was similar to that of C and followed a similar pattern
4	across all the heating temperatures. Similarly, the macro aggregate size fraction (2-0.25 mm)
5	had the least amount of N concentration and silt-clay size particles (<0.053 mm) had the
6	largest concentration of N. For Shaver (1737 m), Sirretta (2317 m) and Chiquito (2865 m)
7	soils, the macro size aggregate N concentration was too low and could not be detected
8	(Figure 3). The atomic C:N ratio generally stayed the same for all soils through the
9	temperatures. C:N ratio was highest in macro size aggregates, which had lowest C and N
10	concentrations, followed by micro and by silt-clay sizes for all soils.
11	The stable isotope composition of ¹³ C was very similar between aggregate sizes with silt-clay
12	size aggregates being slightly more enriched except for Shaver (1737 m), which had slightly
13	more enriched macro aggregates. On the other hand, the $\delta^{15}N$ values showed clear differences
14	among aggregate fractions even though the measured values of $\delta^{15}N$ did not change notably
15	with combustion temperatures. $\delta^{15}N$ was highest in silt-clay size particles and lowest in
16	macro size aggregates with the micro size aggregates showing intermediate values. The
17	pattern of change in $\delta^{15}N$ across combustion temperatures did not affect this order of $\delta^{15}N$
18	values among aggregate fractions. Most of the C and N in the soils was associated with the
19	larger, macro and micro, aggregate size fractions. With the exception of Vista (210 m) soils,
20	the distribution changed with increase in heating temperature where the concentrations in
21	macro aggregates decreased markedly that the remaining C and N concentrations were
22	distributed between the smaller aggregate fractions (Figure 4). At 450 C, most of the C and N
23	of the higher altitude soils (Shaver, Sieretta and Chiquito) was now associated with the silt-
24	clay sized fractions.

1 3.4. FTIR spectroscopy

- 2 Changes in chemical composition of SOM due to heating were analyzed by infrared
- 3 spectroscopy using Diffuse reflectance infrared fourier transform (DRIFT) technique.
- 4 Absorption band functional group assignments that were used in this study are given in
- 5 Error! Reference source not found.. The spectra and peaks after combustion at different
- 6 temperatures exhibited qualitative similarities among the different soils. FTIR spectra for the
- 7 soils are shown in Figure 5. One notable changes that occurred in the functional group
- 8 composition of SOM with heating is the lowered absorbance intensity of aliphatic methylene
- 9 groups (as represented by the aliphatic C-H stretching peak that appear at bands between
- 10 $2950 2850 \text{ cm}^{-1}$) at >250 °C in all soils. When comparing intensity of peaks at 2910 2930
- 11 and 2853 cm⁻¹ wave numbers (from aliphatic methyl and methylene groups, band A) with
- 12 those at 1653 and 1400 cm⁻¹ (oxygen containing carboxyl and carbonyl groups, band B), the
- 13 decrease in prominence in the aliphatic C-H peak occurs early in the heating sequence while
- 14 the C=O band shows little relative change. In addition, after heating at a temperature of
- 15 550 °C all soils lost the O–H stretching peaks (between $3700 3200 \text{ cm}^{-1}$). In a pattern that is
- 16 more prominent for the Musick soil that had the highest concentration of OM, the aromatic
- 17 C=C stretch around 1600 cm⁻¹ gets more resolved with increase in heating temperature. This
- 18 pattern in the C=C is visible, but less well resolved in the rest of the soils, especially the Vista
- 19 soil that showed the least resolved aromatic C=C stretch peak at this region.

20 4. Discussion

- 21 4.1. Changes in SOM concentration, distribution and composition
- 22 Our results show significant effects of combustion temperature on concentration, distribution,
- and composition of SOM on topsoils that experience the most intense heating during
- 24 vegetation fires. Topsoils have relatively high OM and low clay content that render them

1	more sensitive to heating as the SOM experiences significant changes during heating. In our
2	study system, the effect of fire heating on SOM ranged from slight distillation (volatilization
3	of minor constituents) typically at temperatures below 150°C, to charring which typically
4	starts at temperatures above 350°C and complete combustion, consistent with findings of
5	previous studies (Badía and Martí, 2003b; Certini, 2005). Our findings also confirmed that,
6	for all the soils that varies in mineralogy and other soil physico-chemical properties, the
7	heating treatments (as proxy for wild fires) led to consistent decrease in concentration of soil
8	C in topsoil as was previously observed by Badía et al. (2014); Certini (2005); and Knicker et
9	al. (2005). As topsoil experiences most significant changes, it is expected that the C
10	concentration in subsoil is likely to remain unchanged or may even increase (for example
11	Dennis et al. (2013); Kavdır et al. (2005)) due to incorporation of necromass from surface
12	biomass (Almendros et al., 1990).
13	We observed significant changes in quantity and quality of SOM with increasing heating
13 14	We observed significant changes in quantity and quality of SOM with increasing heating temperature. The steep decline in concentration of C in soil that we observed between this
14	temperature. The steep decline in concentration of C in soil that we observed between this
14 15	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C
14 15 16	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C (Figure 6). The magnitude of C loss with heating we observed is similar to the findings of
14 15 16 17	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C (Figure 6). The magnitude of C loss with heating we observed is similar to the findings of (Terefe et al., 2008; Ulery and Graham, 1993) that investigated changes in soil C using
14 15 16 17 18	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C (Figure 6). The magnitude of C loss with heating we observed is similar to the findings of (Terefe et al., 2008; Ulery and Graham, 1993) that investigated changes in soil C using artificial heating experiment. Similarly, Giovannini et al. (1988) also found OM decrease
14 15 16 17 18 19	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C (Figure 6). The magnitude of C loss with heating we observed is similar to the findings of (Terefe et al., 2008; Ulery and Graham, 1993) that investigated changes in soil C using artificial heating experiment. Similarly, Giovannini et al. (1988) also found OM decrease started at 220 °C with about 15% loss of OM and about 90% OM loss at 460 °C; while
14 15 16 17 18 19 20	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C (Figure 6). The magnitude of C loss with heating we observed is similar to the findings of (Terefe et al., 2008; Ulery and Graham, 1993) that investigated changes in soil C using artificial heating experiment. Similarly, Giovannini et al. (1988) also found OM decrease started at 220 °C with about 15% loss of OM and about 90% OM loss at 460 °C; while Fernández et al. (1997) reported 37% of SOM loss at 220 °C and 90% at 350 °C.
14 15 16 17 18 19 20 21	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C (Figure 6). The magnitude of C loss with heating we observed is similar to the findings of (Terefe et al., 2008; Ulery and Graham, 1993) that investigated changes in soil C using artificial heating experiment. Similarly, Giovannini et al. (1988) also found OM decrease started at 220 °C with about 15% loss of OM and about 90% OM loss at 460 °C; while Fernández et al. (1997) reported 37% of SOM loss at 220 °C and 90% at 350 °C. Furthermore, along with the change in C concentration; between 150 °C and before almost
14 15 16 17 18 19 20 21 22	temperature. The steep decline in concentration of C in soil that we observed between this study is consistent with decrease of about 25% C at 250°C and an almost 99% loss at 450°C (Figure 6). The magnitude of C loss with heating we observed is similar to the findings of (Terefe et al., 2008; Ulery and Graham, 1993) that investigated changes in soil C using artificial heating experiment. Similarly, Giovannini et al. (1988) also found OM decrease started at 220 °C with about 15% loss of OM and about 90% OM loss at 460 °C; while Fernández et al. (1997) reported 37% of SOM loss at 220 °C and 90% at 350 °C. Furthermore, along with the change in C concentration; between 150 °C and before almost total loss of C above 450 °C, the SOM went through significant qualitative changes that

25 volatilization (Fisher and Binkley, 2000). In this study, we observed that N is not as

1

2

3

4

5 immediate combustion product that contributes to formation of nitrate (NO_3) by nitrification 6 reactions in weeks or months after fire. Decrease in C:N ratio with fire heating has previously 7 been observed in both laboratory and field fire studies (Badía and Martí, 2003a; Certini, 2005; Fernández et al., 1997; González-Pérez et al., 2004). 8 SOM has a C isotopic composition that reflects the δ^{13} C signature of native vegetation. Plants 9 10 are depleted in δ^{13} C relative to atmosphere. The δ^{13} C composition for our soils indicated that 11 the dominant source of OM in all soils is C3 plant biomass that had average δ^{13} C of -27%, 12 with the higher elevation soils having more positive δ^{13} C than the low elevation. Enrichment of ¹³C with heating is consistent with the loss of plant derived C. The enrichment of δ^{13} C with 13 heating is also likely enhanced because the relatively more δ^{13} C depleted lipids are 14 15 combusted at lower temperatures relative to woody materials (cellulose, lignin) which are 16 typically combusted at higher temperatures (>300°C) (Czimczik et al., 2002). The stable C and N isotope composition of our soils showed significant fractionation with temperature. 17 δ^{13} C values became more positive (enriched in δ^{13} C) up to 450 °C where up to 99% of C was 18 19 lost (Figure 6). At higher temperature there was a less uniform pattern among the soils. For 20 the last <1% C. Sirretta and Chiquito soils continued to be more negative (depleted in δ^{13} C) 21 at higher temperature while for the rest of the soils there was a slight depletion at 550° C 22 followed by a slight enrichment at 650 °C (Figure 2). The depletion of δ^{13} C at 550 and

significantly reduced until 350°C with about 75% N remaining as opposed to greater than

showed that moderate to high intensity fires convert most organic-N into inorganic forms of

N, specifically Ammonium (NH4⁺) (Certini, 2005; Huber et al., 2013). Ammonium is the

50% loss of C concentration at the same temperature (Figure 6). Previously studies had

- 23 650 °C we found in this study is likely a result of SOM charring as there was little or no
- 24 decrease in C concentration between these temperatures. In a wood charring experiment
- 25 (non-oxygen atmosphere) at 150, 340 and 480 °C, Czimczik et al. (2002), observed an

- 1 enrichment of δ^{13} C at 150 °C where there was no C concentration change but a depletion of
- 2 δ^{13} C at 340 and 480 °C with charring where the C concentration increased over 50% due to
- 3 charring.

Fires tend to lead to enrichment of ¹⁵N was observed in soils, especially immediately in the 4 5 aftermath of fires (Boeckx et al., 2005; Grogan et al., 2000; Herman and Rundel, 1989; Huber 6 et al., 2013), but there is limited information available on the exact temperature ranges that 7 cause specific levels of ¹⁵N enrichment. In this study, we obxerved enrichment of ¹⁵N up to 8 350 °C and depletion after 350 °C for all soils (Figure 2) likely due to isotopic fractionation 9 of ¹⁵N during combustion and volatilization, the extent of which is dependent on duration and 10 intensity of heating (Huber et al., 2013). In a post fire-analysis of δ^{15} N on a sub-alpine 11 ecosystem in Australia, Huber et al. (2013) found that bulk soil (0-5 cm) was enriched in 12 ¹⁵N (approximately 3.3‰) while charred OM was enriched to a lesser extent (approximately 13 0.5‰) and ash to an even lesser extent (approximately -0.6‰). They attributed this difference 14 in enrichment to be the result of heating intensity, that is, lower heat intensity provided 15 slower processes for greater fractionation (observed in bulk soil), while higher intensity fires 16 result in full combustion of plant material providing little opportunity for isotopic discrimination (observed in ash). The depletion of ¹⁵N observed after 350 °C corresponds 17 18 with our findings of steep decline in N concentration (Figure 6) further supporting the 19 explanation that the enrichment prior to 350 °C is likely due to fractionation during 20 combustion and volatilization whereas at higher temperatures reversal of pattern towards depletion is likely a result of the indiscriminate removal of N. 21 22 4.1.1. 4.1.1 Implication of SOM changes with heating

23 The alterations and loss of SOM is likely more important cause of soil property changes

24 rather than alterations to soil minerals. SOM is vulnerable to temperatures while soil minerals

- 1 are only affected at much higher temperatures (Araya et al., 2016). In addition, all of the soils
- 2 in our study are characterized by low clay content and low concentration of reactive minerals,
- 3 but high concentration of SOM especially in topsoil leading to strong relationships between
- 4 SOM concentrations and soils' physical properties.
- 5 Knicker (2007) conducted a SOM and plant residue heating experiment in which she
- 6 observed degradation of lignin and hemicellulose beginning at 130 and 190 °C, respectively;
- 7 and completely removal of carbohydrate signal from ${}^{13}C$ NMR spectra by 350 °C.
- 8 Furthermore, Knicker observed loss of stable alkyl C and carboxyl C at 350 °C leading to
- 9 enrichment of aromatic functional groups in the remaining residue, consistent with what
- 10 would expected from incomplete combustion of OM during fires, leading to transformation
- and production of charred products. FTIR analyses from our work showed that the aliphatic
- 12 O-H stretch peak (bands 3700 3200 cm⁻¹) disappeared at temperatures above 550 °C for all

13 soils accompanied by nitriles or methanenitrile C=N stretch $(2300 - 2200 \text{ cm}^{-1})$ at

- 14 temperature above 450 suggesting condensation of aromatic functional groups.
- 15 Loss of OM from soil due to combustion has multiple implications on soil physico-chemical
- 16 properties. Simple linear regressions between C concentration changes and other soil physical
- 17 and chemical changes that we observed with heating (reported here and in Araya et al.
- 18 (2016)) show that more than 80% of the variability in mass loss, aggregate strength, SSA,
- 19 pH, CEC and N concentrations is associated with changes in C concentration at the different
- 20 heating temperatures. Table3 summarizes the correlation coefficients of soil property changes
- 21 with change in C concentration. Analyses of associations between C concentration and
- several soil properties showed linear association between: C and N ($R^2 > 0.8$), mass loss
- 23 ($R^2 > 0.8$, except for Vista and Sirretta soils), pH ($R^2 > 0.8$, except for Shaver and Sirretta),
- 24 CEC (R² >0.7, except for Chiquito). Linear association between C concentration and

- 1 aggregate strength ($R^2 > 0.7$, except for Musick and Chiquito which had $R^2 \sim 0.7$). Specific
- 2 surface area showed relation with C ($R^2 > 0.7$ except for Vista and Musick).
- 3 In this study, the most significant changes in SOM occurred between temperatures 250 and
- 4 450 °C and we found that temperatures below 250 °C had little effect on the quality and
- 5 quantity of SOM. This implies that lower intensity fires, such as typical prescribed fires,
- 6 where soil surface temperatures do not exceed below 250 °C (Janzen and Tobin-Janzen,
- 7 2008) have minimum impact on SOM.

8 4.2. Climate Change Implications

9 Investigation of the response of climosequence soils to different heating temperature in this 10 study enables us to infer how, in the long-term, changes in climate (and associated changes in 11 soil properties) are likely to alter the effect of fires on topsoil physical and chemical 12 properties. Along our study climosequence, we observed critical differences in response of 13 topsoils based mostly on concentration OM in soil and soil development stages of each soil --14 both variables that are expected to respond to changes in climate (Berhe et al., 2012b). 15 Consequently, changes in soil C storage associated with climate change are expected to lead 16 to different amounts of C loss due to fires. This is evidenced by the observed highest total 17 mass of C loss from the mid-elevation Musick soil that had the highest carbon stock, 18 compared to soils in either side of that elevation range. Anticipated changes in climate in the 19 Sierra Nevada mountain ranges are expected to include upward movement of the rain-snow 20 transition line exposing areas that now receive most of their precipitation as snow to rainfall 21 and associated runoff (Arnold et al., 2015, 2014; Stacy et al., 2015). Moving of the rain-snow 22 transition zone higher and promotion of more intense weathering at higher elevation zones 23 then is likely to render more C to loss during fires. As we found in this study, more than 80%

- 1 of the variability in mass loss, aggregate strength, SSA, pH, CEC and N concentrations is
- 2 associated with changes in C concentration at the different heating temperatures (Table 3).
- 3 The different responses of soil aggregation in our climosequence to the treatment
- 4 temperatures also suggest potential loss and transformation of the physically protected C pool
- 5 in topsoil. Degradation of aggregates during fire (Albalasmeh et al., 2013) is likely to render
- 6 aggregate-protected C to potential loses through oxidative decomposition, leaching and
- 7 erosion. Moreover, in systems such as the Sierra Nevada where steep slopes and organic
- 8 matter-rich topsoils dominate, movement of the rain-snow transition zone upward is likely to
- 9 increase proportion of precipitation that occurs as rain. The kinetic energy of raindrops and
- 10 observed increase in hydrophobicity of soils post-fires (Johnson et al., 2007; Johnson et al.,
- 11 2004) can lead to higher rates of erosional redistribution of especially the free light fraction
- 12 or particulate C that is not associated with soil minerals (Berhe et al., 2012a; Berhe and
- 13 Kleber, 2013; McCorkle et al., 2016; Stacy et al., 2015).
- 14 Finally, with changes in climate it is anticipated that fires will increase in severity
- 15 (Westerling et al., 2006). Our findings of important changes in soil physical and chemical
- 16 properties occurring between 250-450 °C are important for recognizing that critical
- 17 transformations of topsoil SOM are likely to occur when, as a result of climate change,
- 18 systems that are adapted to low severity fires experience medium to high severity fires.

19 **5.** Conclusion

The findings of this study showed that changes in soil properties during heating are closely related to changes in C concentrations in soil. The temperatures most critical to C loss and alteration were found to be 250 °C, where charring of organic matter starts and 450 °C where most of the SOM is combusted. Most soil properties exhibited a steep change in this temperature range. SOM exhibited largest change, i.e. soil got enriched in ¹³C and ¹⁵N

- 1 isotopic composition until approximately 90% of C and N was lost, at higher temperatures
- 2 slight depletion of ¹³C and steep depletion of ¹⁵N is observed. FTIR spectroscopy showed the
- 3 reduction and disappearance of aliphatic OH functional groups with temperature increase and
- 4 accumulation of aromatic carbon groups.
- 5 This study presented the effects of heat input on topsoil properties. The study is necessary to
- 6 understand thermally induced changes on soil properties in isolation from other variables that
- 7 accompany vegetation fires such as the addition of pyrolysis products from plants and ash,
- 8 and the fire induced soil moisture dynamics. Findings from this study will contribute towards
- 9 estimating the amount and rate of change in carbon and nitrogen loss, and other essential soil
- 10 properties that can be expected from topsoil exposure to different intensity fires under
- 11 anticipated climate change scenarios.

12 6. Acknowledgements

- 13 The authors would like to thank Prof. Randy A. Dahlgren for providing us with geo-
- 14 references for the study sites, background data, and for his comments on an earlier version of
- 15 this manuscript. We thank Dr. Christina Bradley for her help and expertise in analysis of C
- 16 and N; and Dr. Samuel Traina for his comments on an earlier version of this manuscript.
- 17 Funding for this work was provided by UC Merced Graduate Research Council grant
- 18 and National Science Foundation (CAREER EAR 1352627) award to A. A. Berhe.

7. References 1

- 2 Albalasmeh, A. A., Berli, M., Shafer, D. S., and Ghezzehei, T. A.: Degradation of moist soil
- 3 aggregates by rapid temperature rise under low intensity fire, Plant and Soil, 362, 335-344, 4 doi: 10.1007/s11104-012-1408-z, 2013.

5 Almendros, G., Gonzalez-Vila, F. J., and Martin, F.: Fire-induced transformation of soil 6 organic matter from an oak forest: an experimental approach to the effects of fire on humic 7 substances, Soil Sci, 149, 158-168, 1990.

- 8 Araya, S. N., Meding, M., and Berhe, A. A.: Thermal alteration of soil physico-chemical
- 9 properties: a systematic study to infer response of Sierra Nevada climosequence soils to
- 10 forest fires, Soil, 2, 351-366, doi: 10.5194/soil-2-351-2016, 2016.
- 11 Arnold, C., Ghezzehei, T. A., and Berhe, A. A.: Decomposition of distinct organic matter
- 12 pools is regulated by moisture status in structured wetland soils, Soil Biology and
- 13 Biochemistry, 81, 28-37, doi: 10.1016/j.soilbio.2014.10.029, 2015.
- 14 Arnold, C., Ghezzehei, T. A., and Berhe, A. A.: Early spring, severe frost events, and drought
- induce rapid carbon loss in high elevation meadows, PloS one, 9, e106058, doi: 15
- 10.1371/journal.pone.0106058, 2014. 16
- 17 Badía, D. and Martí, C.: Effect of simulated fire on organic matter and selected
- 18 microbiological properties of two contrasting soils, Arid Land Research and Management,,
- 19 17, 55-69, doi: 10.1080/15324980301594, 2003a.
- 20 Badía, D. and Martí, C .: Plant ash and heat intensity effects on chemical and physical
- 21 properties of two contrasting soils, Arid Land Research and Management, 17, 23-41, doi: 22 10.1080/15324980301595, 2003b.
- 23 Badía, D., Martí, C., Aguirre, A. J., Aznar, J. M., González-Pérez, J. A., De la Rosa, J. M.,
- 24 León, J., Ibarra, P., and Echeverría, T.: Wildfire effects on nutrients and organic carbon of a
- 25 Rendzic Phaeozem in NE Spain: Changes at cm-scale topsoil, Catena, 113, 267-275, doi:
- 26 10.1016/j.catena.2013.08.002, 2014.
- 27 Berhe, A. A., Harden, J. W., Torn, M. S., Kleber, M., Burton, S. D., and Harte, J.: Persistence 28 of soil organic matter in eroding versus depositional landform positions, J Geophys Res-29 Biogeo, 117, doi: 10.1029/2011jg001790, 2012a.
- 30 Berhe, A. A. and Kleber, M.: Erosion, deposition, and the persistence of soil organic matter: 31 mechanistic considerations and problems with terminology, Earth Surface Processes and 32 Landforms, 38, 908-912, doi: 10.1002/esp.3408, 2013.
- 33 Berhe, A. A., Suttle, K. B., Burton, S. D., and Banfield, J. F.: Contingency in the Direction
- 34 and Mechanics of Soil Organic Matter Responses to Increased Rainfall, Plant and Soil, 358, 35 371-383, doi: 10.1007/s11104-012-1156-0, 2012b.
- Boeckx, P., Paulino, L., Oyarzun, C., van Cleemput, O., and Godoy, R.: Soil d ¹⁵N patterns in 36 old-growth forests of southern Chile as integrator for N-cycling, Isot Environ Healt S, 41, 37 38
- 249-259, doi: 10.1080/10256010500230171, 2005.

- 1 Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A.,
- 2 D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E.,
- 3 Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I.,
- 4 Scott, A. C., Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth System,
- 5 Science, 324, 481-484, doi: 10.1126/science.1163886, 2009.
- 6 Caldararo, N.: Human ecological intervention and the role of forest fires in human ecology,
- 7 The Science of the Total Environment, 292, 141-165, doi: 10.1016/S0048-9697(01)01067-1,
 8 2002.
- 9 California Department of Water Resources: Water Conditions in California. Bull. 120,
 10 Sacramento, 1952-1962.
- 11 Caprio, A. C. and Swetnam, T. W.: Historic fire regimes along an elevational gradient on the 12 west slope of the Sierra Nevada, California, Missoula, MT, March 30 - April 1 1993, 173-
- 12 west slope of u 13 179, 1995.
- 14 Carroll, E. M., Miller, W. W., Johnson, D. W., Saito, L., Qualls, R. G., and Walker, R. F.:
- Spatial analysis of a large magnitude erosion event following a Sierran wildfire, Journal of environmental quality, 36, 1105-1111, doi: 10.2134/jeq2006.0466, 2007.
- Certini, G.: Effects of fire on properties of forest soils: a review, Oecologia, 143, 1-10, doi:
 10.1007/s00442-004-1788-8, 2005.
- 19 Czimczik, C. I., Preston, C. M., Schmidt, M. W. I., Werner, R. A., and Schulze, E.-D.:
- 20 Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood,
- 21 Organic Geochemistry, 33, 1207-1223, 2002.
- 22 Dahlgren, R. A., Boettinger, J. L., Huntington, G. L., and Amundson, R. G.: Soil
- 23 development along an elevational transect in the western Sierra Nevada, California,
- 24 Geoderma, 78, 207-236, doi: 10.1016/S0016-7061(97)00034-7, 1997.
- DeBano, L. F.: The effect of fire on soil properties, Boise, ID, April 10-12, 1990 1991, 151156.
- DeBano, L. F., Dunn, P. H., and Conrad, C. E.: Fire's effect on physical and chemical
 properties of Chaparral soils, 1977.
- DeBano, L. F., Neary, D. G., and Ffolliott, P. F.: Fire's effect on ecosystems John Wiley &
 Sons, Inc., New York, USA, 1998.
- Dennis, E. I., Usoroh, A. D., and Ijah, C. J.: Soil properties dynamics induced by passage of
 fire during agricultural burning, International Journal of Advance Agricultural Research, 1,
 43-52, 2013.
- 34 Ellerbrock, R. H. and Gerke, H. H.: Characterization of organic matter composition of soil
- 35 and flow path surfaces based on physicochemical principles—a review. In: Advances in
- Agronomy, Sparks, D. L. (Ed.), Academic Press, Burlington, 2013.

FAO: State of the world's forest Food and Agricultural Organization of the United Nations,Rome, Italy, 2005.

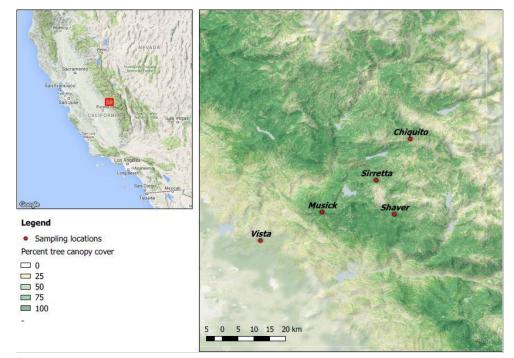
- 1 Fernández, I., Cabaneiro, A., and Carballas, T.: Organic matter changes immediately after a
- 2 wildfire in an Atlantic forest soil and comparison with laboratory soil heating, Soil Biology
- 3 and Biochemistry, 29, 1-11, doi: 10.1016/S0038-0717(96)00289-1, 1997.
- 4 Fernández, I., Cabaneiro, A., and Carballas, T.: Thermal resistance to high temperatures of
- different organic fractions from soils under pine forests, Geoderma, 104, 281-298, doi:
 10.1016/S0016-7061(01)00086-6, 2001.
- Fisher, R. F. and Binkley, D.: Ecology and management of forest soils, 3, John Wiley andSons, Inc., New York, USA., 2000.
- 9 Frandsen, W. H. and Ryan, K. C.: Soil moisture reduces belowground heat flux and soil
- temperatures under a burning fuel pile, Canadian Journal of Forest Research, 16, 244-248,
 doi: 10.1139/x86-043, 1986.
- 12 Giovannini, G.: The effect of fire on soil quality. In: Soil Erosion and Degradation as a
- Consequence of Forest Fires, Sala, M. and Rubio, J. L. (Eds.), Geoforma Ediciones, Logrono,
 1994.
- 15 Giovannini, G., Lucchesi, S., and Giachetti, M.: Effect of heating on some physical and
- chemical parameters related to soil aggregation and erodibility, Soil Sci, 146, 255-261, doi:
 10.1097/00010694-198810000-00006, 1988.
- 18 González-Pérez, J., González-Vila, F., Almendros, G., and Knicker, H.: The effect of fire on
- 19 soil organic matter—a review, Environment international, 30, 855-870, doi:
- 20 10.1016/j.envint.2004.02.003, 2004.
- Grogan, P., Burns, T. D., and Chapin III, F. S.: Fire effects on ecosystem nitrogen cycling in
 a Californian bishop pine forest, Oecologia, 122, 537-544, doi: 10.1007/s004420050977,
 2000.

Harradine, F. and Jenny, H.: Influence of parent material and climate on texture and nitrogen
and carbon contents of virgin California soils: texture and nitrogen contents of soils, Soil Sci,
85, 235-243, 1958.

- 27 Harrison, S. P., Marlon, J. R., and Bartlein, P. J.: Fire in the Earth System. In: Changing
- Climates, Earth Systems and Society., Dodson, J. (Ed.), International Year of Planet Earth,
 Springer, New York, 2010.
- Herman, D. J. and Rundel, P. W.: Nitrogen isotope fractionation in burned and unburned
 Chaparral soils, Soil Science Society of America Journal, 53, 1229-1236, 1989.
- 32 Huber, E., Bell, T. L., and Adams, M. A.: Combustion influences on natural abundance
- 33 nitrogen isotope ratio in soil and plants following a wildfire in a sub-alpine ecosystem,
- 34 Oecologia, 173, 1063-1074, doi: 10.1007/s00442-013-2665-0, 2013.
- Huntington, G. L.: The effect of vertical zonality on clay content in residual granitic soils of
 the Sierra Nevada mountains, University of California, Berkeley, 1954.
- Janik, L. J., Merry, R. H., and Skjemstad, J. O.: Can mid-infrared diffuse reflectance analysis replace soil extractions?, Aust J Exp Agr, 38, 681-696, doi: 10.1071/Ea97144, 1998.

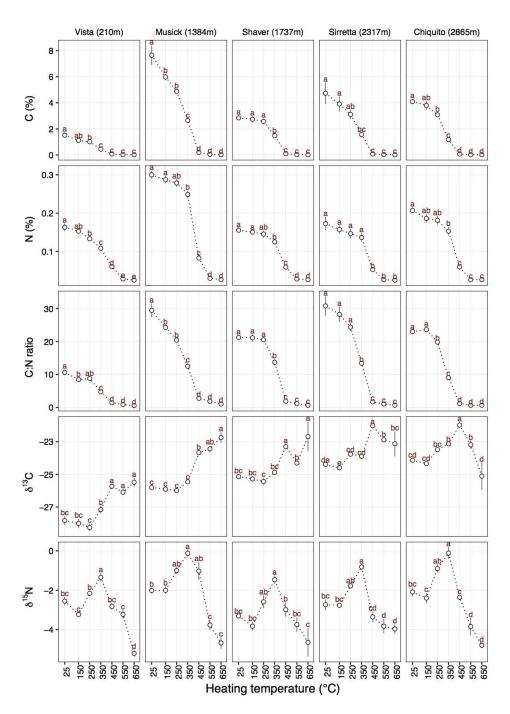
- 1 Janzen, C. and Tobin-Janzen, T.: Microbial communities in fire-affected soils. In:
- 2 Microbiology of Extreme Soils, Dion, P. and Nautiyal, C. S. (Eds.), Soil Biology, 13,
- 3 Springer-Verlag Berlin Heidelberg, 2008.
- 4 Jenny, H., Gessel, S. P., and Bingham, F. T.: Comparative study of decomposition rates of organic matter in temperate and tropical regions, Soil Sci, 68, 419-432, 1949. 5
- 6 Johnson, D., Murphy, J., Walker, R., Glass, D., and MILLER, W.: Wildfire effects on forest 7 carbon and nutrient budgets, Ecological Engineering, 31, 183-192, 2007.
- 8 Johnson, D. W., Susfalk, R. B., Caldwell, T. G., Murphy, J. D., Miller, W. W., and Walker,
- 9 R. F.: Fire Effects on Carbon and Nitrogen Budgets in Forests, Water, Air, & Soil Pollution: 10
- Focus, 4, 263-275, doi: 10.1023/B:WAFO.0000028359.17442.d1, 2004.
- 11 Kaiser, M., Kleber, M., and Berhe, A. A.: How air-drying and rewetting modify soil organic 12 matter characteristics: An assessment to improve data interpretation and inference, Soil Biol
- 13 Biochem, 80, 324-340, doi: 10.1016/j.soilbio.2014.10.018, 2015.
- 14 Kavdır, Y., Ekinci, H., Yüksel, O., and Mermut, A. R.: Soil aggregate stability and ¹³C
- 15 CP/MAS-NMR assessment of organic matter in soils influenced by forest wildfires in
- Çanakkale, Turkey, Geoderma, 129, 219-229, doi: 10.1016/j.geoderma.2005.01.013, 2005. 16
- 17 Knicker, H.: How does fire affect the nature and stability of soil organic nitrogen and carbon? 18 A review, Biogeochemistry, 85, 91-118, doi: 10.1007/s10533-007-9104-4, 2007.
- 19 Knicker, H., Gonzalezvila, F., Polvillo, O., Gonzalez, J., and Almendros, G.: Fire-induced
- 20 transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol
- 21 under a Mediterranean pine forest, Soil Biology and Biochemistry, 37, 701-718, doi:
- 22 10.1016/j.soilbio.2004.09.008, 2005.
- 23 Mataix-Solera, J., Cerda, A., Arcenegui, V., Jordan, A., and Zavala, L. M.: Fire effects on
- 24 soil aggregation: A review, Earth-Sci Rev, 109, 44-60, doi: 10.1016/j.earscirev.2011.08.002, 25 2011.
- 26 McCorkle, E. P., Berhe, A. A., Hunsaker, C. T., McFarlane, K. J., Johnson, D., Fogel, M. L.,
- 27 and Hart, S. C.: Tracing the source of soil organic matter eroded from temperate forested 28 catchments using carbon and nitrogen isotopes Chemical Geology, 2016. 2016.
- 29 McKelvey, K. S., Skinner, C. N., Chang, C.-r., Erman, D. C., Husari, S. J., Parsons, D. J.,
- 30 Wagtendonk, J. W. v., and Weatherspoon, C. P.: An overview of fire in the Sierra Nevada, 31 Davis, California37, 1996.
- 32 National Interagency Fire Center: https://www.nifc.gov/fireInfo/fireInfo statistics.html, last 33 access: 5 June 2015.
- 34 Neary, D. G., Klopatek, C. C., DeBano, L. F., and Ffolliott, P. F.: Fire effects on
- 35 belowground sustainability: a review and synthesis, Forest Ecology and Management, 122,
- 36 51-71, doi: 10.1016/S0378-1127(99)00032-8, 1999.
- 37 Parikh, S. J., Goyne, K. W., Margenot, A. J., Mukome, F. N. D., and Calderón, F. J.: Soil
- 38 chemical insights provided through vibrational spectroscopy. In: Advances in Agronomy,
- 39 Donald, L. S. (Ed.), Academic Press, 2014.

- 1 Parsons, A., Robichaud, P. R., Lewis, S. A., Napper, C., and Clark, J.: Field guide for
- 2 mapping post-fire soil burn severity, U.S. Department of Agriculture, Forest Service, Rocky
- 3 Mountain Research Station, Fort Collins, CO, 2010.
- 4 Pechony, O. and Shindell, D. T.: Driving forces of global wildfires over the past millennium
- 5 and the forthcoming century, Proceedings of the National Academy of Sciences of the United
- 6 States of America, 107, 19167-19170, doi: 10.1073/pnas.1003669107, 2010.
- R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for
 Statistical Computing, Vienna, Austria, 2014.
- 9 Rasmussen, C., Matsuyama, N., Dahlgren, R. A., Southard, R. J., and Brauer, N.: Soil
- 10 Genesis and Mineral Transformation Acrossan Environmental Gradient on Andesitic Lahar,
- 11 Soil Science Society of America Journal, 71, 225-237, doi: 10.2136/sssaj2006.0100, 2007.
- Reeves III, J. B.: Mid-infrared diffuse reflectance spectroscopy: is sample dilution with KBr
 necessary, and if so, when?, American Laboratory, 35, 24-28, 2003.
- 14 Rein, G., Cleaver, N., Ashton, C., Pironi, P., and Torero, J. L.: The severity of smouldering
- 15 peat fires and damage to the forest soil, Catena, 74, 304-309, doi:
- 16 10.1016/j.catena.2008.05.008, 2008.
- 17 Singh, N., Abiven, S., Torn, M. S., and Schmidt, M. W. I.: Fire-derived organic carbon in soil
- turns over on a centennial scale, Biogeosciences, 9, 2847-2857, doi: 10.5194/bg-9-28472012, 2012.
- 20 Skinner, C. N. and Chang, C.-R.: Fire Regimes, Past and Present. In: Sierra Nevada
- 21 Ecosystem Project, Final Report to Congress, Vol II, Assessment and Scientific Basis for
- 22 management Options, Davis: University of California, Center for Wate rand Wildland
- 23 Resoures, 1996.
- Soto, B., Benito, E., Basanta, R., and Díaz-Fierros, F.: Influence of antecedent soil moisture
 on pedological effects of fire. In: Soil Erosion and Degradation as a Consequence of Forest
- 26 Fires, Sala, M. and Rubio, J. L. (Eds.), Geoforma Ed., Logroño, Spain, 1991.
- Stacy, E., Hart, S. C., Hunsaker, C. T., Johnson, D. W., and Berhe, A. A.: Soil carbon and
 nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon
 sequestration, Biogeosciences, 12, 4861-4874, doi: 10.5194/bgd-12-2491-2015, 2015.
- Terefe, T., Mariscal-Sancho, I., Peregrina, F., and Espejo, R.: Influence of heating on various
 properties of six Mediterranean soils: a laboratory study, Geoderma, 143, 273-280, doi:
 10.1016/j.geoderma.2007.11.018, 2008.
- Trumbore, S. E., Chadwick, O. A., and Amundson, R.: Rapid exchange between soil carbon
 and atmospheric carbon dioxide driven by temperature change, Science, 272, 393-396, doi:
 10.1126/science.272.5260.393, 1996.
- 36 U.S. Geological Survey: NLCD 2011 Land Cover (2011 Edition, ammended 2014). 2014.
- 37 Ulery, A. L. and Graham, R. C.: Forest-fire effects on soil color and texture, Soil Science
- Society of America Journal, 57, 135-140, doi: 10.2136/sssaj1993.03615995005700010026x,
- 39 1993.



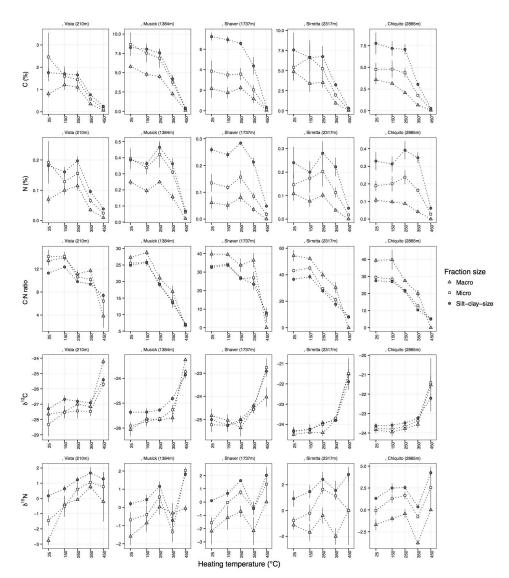
- 1 van Wagtendonk, J. W. and Fites-Kaufman, J. A.: Sierra Nevada Bioregion. In: Fire in
- 2 California's Ecosystems, Sugihara, N. G., van Wagtendonk, J. W., Shaffer, K. E., and Thode,
- 3 A. E. (Eds.), University of California Press, Berkeley, CA, USA, 2006.
- 4 Varela, M. E., Benito, E., and Keizer, J. J.: Effects of wildfire and laboratory heating on soil
- 5 aggregate stability of pine forests in Galicia: the role of lithology, soil organic matter content 6
- and water repellency, Catena, 83, 127-134, doi: 10.1016/j.catena.2010.08.001, 2010.
- 7 Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier
- 8 spring increase western U.S. forest wildfire activity, Science, 313, 940-943, doi:
- 9 10.1126/science.1128834, 2006.
- 10 Zavala, L. M., Granged, A. J. P., Jordán, A., and Bárcenas-Moreno, G.: Effect of burning
- 11 temperature on water repellency and aggregate stability in forest soils under laboratory
- conditions, Geoderma, 158, 366-374, doi: 10.1016/j.geoderma.2010.06.004, 2010. 12
- 13
- 14

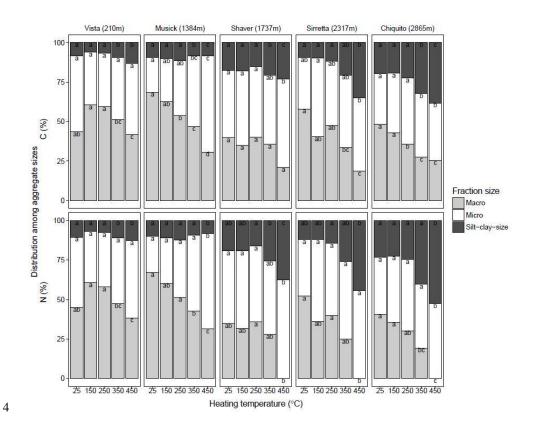
1 Figures



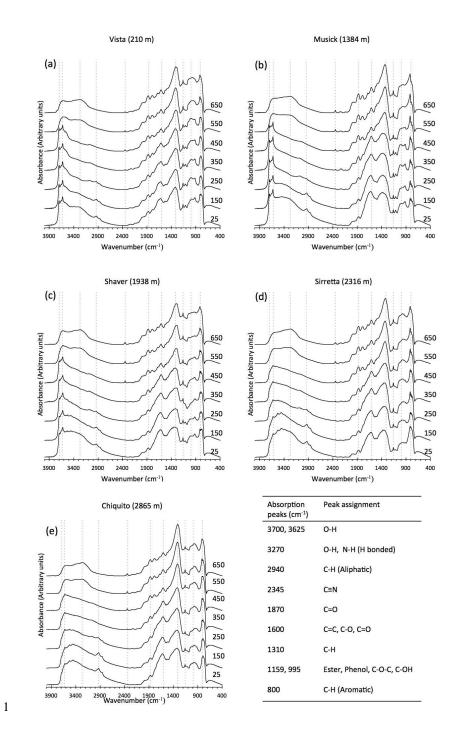
- 3 Figure 1: Map of the five sampling sites along elevational transect in the Western Sierra
- 4 Nevada, California. Base map: percent tree canopy cover (U.S. Geological Survey, 2014).
- 5

2




- 1 Figure 2: Bulk soil Carbon and Nitrogen concentrations, C:N atomic ratio, and δ^{13} C and δ^{15} N
- 2 isotope (‰) changes with increase in heating temperature. Error bars represent standard error
- 3 where n=3. Different letters represent significantly different means (p<0.05) at each
- 4 temperature after Tukey's HSD testing.

- 1 Figure 3. C and N concentrations, C:N atomic ratio, and δ^{13} C and δ^{15} N isotope (‰) changes
- 2 in macro (2-0.25 mm), micro (0.25-0.053 mm) and silt-clay sized (<0.053 mm) aggregates
- 3 with increase in heating temperature. Error bars represent standard error where n=3.



5 Figure 4: C and N distributions in macro (2-0.25 mm), micro (0.25-0.053 mm) and silt-clay

6 sized (<0.053 mm) aggregates.

2 Figure 5: FTIR spectra at the different heating temperatures.

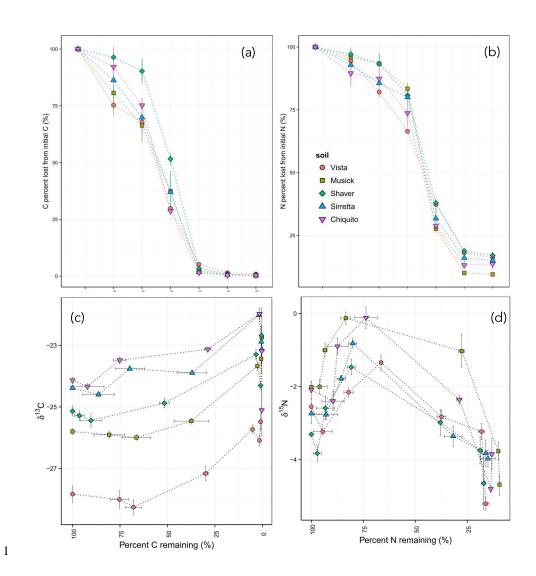


Figure 6: (a) Percentage of C and (b) N loss with heating; and (c) change in δ^{13} C and (d) δ^{15} N versus percent of total C and N lost from soils (error bars represent standard error where n=3).

1

2 Tables

- 3 Table 1 Soil classification and site description for the five sites along elevational transect in
- 4 the western slopes of the Sierra Nevada (adapted from Dahlgren et al., 1997)

Soil Series	Elevation (m)	Ecosystem	MAT ^a (°C)	MAP ^b (cm)	Precip ^c	Dominant vegetation (listed in order of dominance)	Soil taxonomy (family)
Vista	210	Oak woodland	16.7	33	Rain	Annual grasses; Quercus douglasii; Quercus wislizeni	Coarse-loamy, mixed, superactive,thermic Typic Haploxerepts
Musick	1384	Oak/mixed- conifer forest	11.1	91	Rain	Pinus ponderosa; Calocedrus decurrens; Quercus kelloggii; Chamaebatia foliolosa	Fine-loamy, mixed, semiactive, mesic; Ultic Haploxeralf
Shaver	1737	Mixed- conifer forest	9.1	101	Snow	Abies concolor; Pinus lambertiana; Pinus ponderosa; Calocedrus decurrens	Coarse-loamy, mixed, superactive, mesic; Humic Dystroxerepts
Sirretta	2317	Mixed- conifer forest	7.2	108	Snow	Pinus jeffreyi; Abies magnifica; Abies concolor	Sandy-skeletal, mixed, frigid; Dystric Xerorthent
Chiquito ^d	2865	Subalpine mixed- conifer forest	3.9	127	Snow	Pinus contorta murrayana; Pinus monticola; Lupinus species	Sandy-skeletal, mixed; Entic Cryumbrept

5

^a Mean annual air temperature, calculated from regression equation of Harradine and Jenny (1958); ^b Mean annual precipitation; ^c Dominant form of precipitation; ^d Tentative soil series 6

1

- 2 Table 2 Bulk density, water content, pH, C concentration, cation exchange capacity (CEC),
- 3 specific surface area (SSA) and particle size distribution for the five soils (mean ±standard
- 3 specific sur 4 error, n=3)

Soil series and elevation (m)	Bulk density (g/cm ³)	Gravim etric water content	pH (CaCl ₂)	Carbon (%)	CEC (cmol _c /kg)	SSA (m²/g)	Particle size distribution ^a (%)		
		(%)					Sa nd	Silt	Cl ay
Vista (210)	1.26 ±0.07	0.7 ±0.0	5.53 ±0.0	1.51 ±0.2	8.40 ±1.1	1.75 ±0.2	79	11	10
Musick (1384)	0.90 ± 0.06	9.3 ±1.6	4.67 ±0.1	7.66 ± 0.8	25.20 ± 2.0	4.98 ±0.3	60	27	15
Shaver (1737)	0.98 ± 0.06	8.3 ±1.1	4.85 ±0.3	2.84 ±0.2	10.67 ±2.1	3.08 ±0.3	80	15	5
Sirretta (2317)	0.61 ±0.09	9.9 ±2.2	4.54 ±0.1	4.74 ± 0.8	12.23 ±2.6	6.63 ±0.8	80	15	5
Chiquito (2865)	1.17 ±0.03	6.1 ±1.9	3.96 ±0.1	4.10 ±0.2	6.03 ± 1.8	1.00 ±0.04	80	16	4

5 ^a Particle size distribution of top soil profile from Dahlgren et al. (1997): Vista (0 - 14 cm),

6 Musick (0 - 29 cm), Shaver (0 - 4 cm), Sirretta (0 - 6 cm) and Chiquito (0 - 6 cm)

7

1

- 2 Table 3 Linear correlation coefficients of changes in soil properties with changes in C
- 3 concentration

	Correlation coefficient (r ²) values							
Soil	Mass loss	SSA	Aggregate Stability	pH (CaCl ₂)	CEC	N concentration		
Vista	0.74	0.73	0.21	0.77	0.78	0.89		
Musick	0.89	0.58	0.77	0.89	0.96	0.83		
Shaver	0.82	0.58	0.68	0.74	0.78	0.93		
Sirretta	0.60	0.34	0.47	0.67	0.87	0.86		
Chiquito	0.82	0.62	0.78	0.88	0.44	0.87		